Friday, October 29, 2010

Complex Integrals

Sometimes, integrals cannot be solved in terms of the elementary integral shortcuts.  When this occurs, techniques such as substitution, integration by parts, or partial fractions.

As an example, I will show how to integral f(x) = (4-x^2)^1.5.
First, x must be substituted for u, with the equations x = 2sin(u) and dx = 2cos(u) du.
Then, I(f(x)) = I((2cos(u))^3(2cos(u)) du) = 16 I(cos(u)^4 du)
This can be simplified using the identity cos(u)^2 = (1+cos(2u))/2
Using the identity, I(f(x)) = 16 I((1+cos(2u))(1+cos(2u))/4) du)
Distributing, I(f(x)) = 4 I(1 + 2cos(2u) + cos(2u)^2 du)
Using the identity cos(u)^2 = (1+cos(2u))/2 again, I(f(x)) = 4 I(1 + 2cos(2u) + (1+cos(4u))/2 du)
Distributing, I(f(x)) = 2 I(3 + 4cos(2u) + cos(4u) du)
This can be simplified using the equations a = 2u, da = 2du, b = 4u, db = 4du
Then, I(f(x)) = 6 I(du) + 4 I(cos(a) da) + 1/2 I(cos(b) db)
Evaluating, I(f(x)) = 4sin(a) + 1/2sin(b) + 6u
Substituting for u, I(f(x)) = 4sin(2u) + 1/2sin(4u) + 6u
Using the identity sin(2u) = 2sin(u)cos(u), I(f(x)) = 8sin(u)cos(u) + 2sin(2u)cos(2u) + 6u
Using the identity cos(2u) = 1 - 2sin(u)^2, I(f(x)) = 8sin(u)cos(u) + 4sin(u)cos(u)(1-2sin(u)^2) + 6u
Distributing, I(f(x)) = 8sin(u)cos(u) + 4sin(u)cos(u) - 8sin(u)^3cos(u) + 6u
Using the identity cos(u) = (1-sin(u))^.5, I(f(x)) = 8sin(u)(1-sin(u)^2)^.5 + 4sin(u)(1-sin(u)^2)^.5 - 8sin(u)^3(1-sin(u)^2)^.5 + 6u
Substituting for x, I(f(x)) = 4x(1-1/4x^2)^.5 + 2x(1-1/4x^2)^.5 - x^3(1-1/4x^2)^.5 + 6arcsin(1/2x)
Factoring, I(f(x)) = (6x-x^3)(1-1/4x^2)^.5 + 6arcsin(1/2x)
Finally, I(f(x)) =1/4x(6-x^2)(4-x^2)^.5 + 6arcsin(1/2x)

No comments:

Post a Comment