Thursday, October 28, 2010

Shortcuts for Differentiation

While the limit definition of the derivative can allow differentiation, it is often tedious and the shortcuts for differentiation can save time.  Some shortcuts include:

d/dx(C)=0
d/dx(u^n) = nu^(n-1) du/dx
d/dx(sin(u)) = cos(u) du/dx
d/dx(cos(u)) = -sin(u) du/dx
d/dx(tan(u)) = sec(u)^2 du/dx
d/dx(cot(u)) = -csc(u)^2 du/dx
d/dx(sec(u)) = sec(u)tan(u) du/dx
d/dx(csc(u)) = -csc(u)cot(u) du/dx
d/dx(logau) = (logeu)/u du/dx
d/dx(ln(u)) = 1/u du/dx
d/dx(a^u) = a^u ln(a) du/dx
d/dx(e^u) = e^u du/dx
d/dx(arcsin(u)) = 1/(1-u^2)^.5 du/dx
d/dx(arccos(u)) = -1/(1-u^2)^.5 du/dx
d/dx(arctan(u)) = 1/(1+u^2) du/dx
d/dx(arccot(u)) = -1/(1+u^2) du/dx
d/dx(arcsec(u)) = +-1/(u(u^2-1)^.5) du/dx (+ if u > 1 or - if u < -1)
d/dx(arccsc(u)) = +-1/(u(u^2-1)^.5) du/dx (- if u > 1 or + if u < -1)
d/dx(sinh(u)) = cosh(u) du/dx
d/dx(cosh(u)) = sinh(u) du/dx
d/dx(tanh(u)) = sech(u)^2 du/dx
d/dx(coth(u)) = -csch(u)^2 du/dx
d/dx(sech(u)) = -sech(u)tanh(u) du/dx
d/dx(csch(u)) = -csch(u)coth(u) du/dx
d/dx(arcsinh(u)) = 1/(1+u^2)^.5 du/dx
d/dx(arccosh(u)) = 1/(u^2-1)^.5 du/dx
d/dx(arctanh(u)) = 1/(1-u^2) du/dx
d/dx(arccoth(u)) = 1/(1-u^2) du/dx
d/dx(arcsech(u)) = 1/(u(1-u^2)^.5) du/dx
d/dx(arccsch(u)) = -1/(u(u^2+1)) du/dx

No comments:

Post a Comment