An example of an integral. I will be using "I" instead of the integral sign at the beginning. |
The shortcuts for integrals are usually more helpful than those for derivatives, since integrals are more complex to calculate by hand. Some shortcuts include:
I(u^n du) = u^(n+1)/(n+1) when n != -1
I(du/u) = ln(u)
I(sin(u) du) = -cos(u)
I(cos(u) du) = sin(u)
I(tan(u) du) = ln|sec(u)|
I(cot(u) du) = ln|sin(u)|
I(sec(u) du) = ln|sec(u) + tan(u)|
I(csc(u) du) = ln|csc(u) - cot(u)|
I(sec(u)^2 du) = tan(u)
I(csc(u)^2 du) = -cot(u)
I(sec(u)tan(u) du) = sec(u)
I(csc(u)cot(u) du) = -csc(u)
I(a^u du) = a^u/ln(a)
I(e^u du) = e^u
I(sinh(u) du) = cosh(u)
I(cosh(u) du) = sinh(u)
I(tanh(u) du) = ln(cosh(u))
I(coth(u) du) = ln|sinh(u)|
I(sech(u) du) = arctan(sinh(u))
I(csch(u) du) = -arccoth(cosh(u))
I(sech(u)^2 du) = tanh(u)
I(csch(u)^2 du) = -coth(u)
I(sech(u)tanh(u) du) = -csch(u)
I(du/(a^2-u^2)^.5 = arcsin(u/a)
I(du/(u^2+-a^2)^.5) = ln|u + (u^2 +- a^2)^.5|
I(du/(u^2+a^2)) = 1/a arctan(u/a)
I(du/(u^2-a^2)) = 1/(2a) ln|(u-a)/(u+a)|
I(du/(u(a^2+-u^2)^.5)) = 1/a(ln|u/(a+(a^2+-u^2)^.5)|
I(du/(u(u^2-a^2)) = 1/a arccos(a/u)
I((u^2+-a^2)^.5 du) = u/2(u^2+-a^2)^.5 +- a^2/2 ln|u + (u^2+-a^2)^.5|
I((a^2-u^2)^.5 du) = u/2(a^2-u^2)^.5 + a^2/2 arcsin(u/a)
I(e^(au) sin(bu) du) = e^(au)(a sin(bu) - b cos(bu))/(a^2+b^2)
No comments:
Post a Comment